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Unveiling the topological structure of chaotic flows from data
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We report the analysis of branched manifolds through homologies, in order to extend the range of applica-
bility of the topological approach to the analysis of chaotic data. Analytic and numerical cases are discussed.
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[. INTRODUCTION We report the study of two chaotic solutiof@e of them
the result of integrating numerically a three-dimensional set
f ordinary differential equations, the second one from a

Some of the results obtained by dynamicists in the past 2 our-dimensional systemA study of experimental data from

years have had a profound impact in the natural science . ) i .
. . . I e human voicépressure fluctuations as a voiced sound is
particularly, the idea that simple deterministic rules could
pronouncef has been reported ia].

give rise to complex, long-term unpredictable behavior This paper is organized as follows. In Sec. Il, we provide

(chaog [1]. Since then, we have been faced with two main )

. . . ) .. a summary of the mathematical background needed to follow
challenges when dealing with chaotic data: how to unveil the, : : .
. S . .this work. In Sec. lll, we review the role of templates in
simple deterministic rule mentioned above, and how to vali- : . .
. analyzing chaotic data and describe some of these branched

date it from the data. ) : ; . .

. .manifolds in terms of homologies. Section IV contains a de-

One of the most popular approaches to analyzing chaotic . . . .
. . . . —.scription of the way in which we perform our cell decompo-
data is of a metric nature. The stretching and squeezing in

phase space assoiated with e mechanim responsie 1% 15652 Y 21 1, e 1t e sty o o oot
the hypersensitivity to initial conditions give rise to fractal 9 9 y

properties of the invariant set to which the observed trajec'ghree-mmensmnal ordinary differential equation, the second

tory belongs. A quantity describing this fractalitg.g., frac- one from a fqur-dlmen5|onal systemve cloge our work
. - . . with Sec. VII, in which we report our conclusions.

tal dimensiofn can be an important way to estimate the num-

ber of relevant variables affecting the deterministic rule, the

degree of complexity, etc. Yet it does not enlighten the geo-

metric nature of the rulgl].

In recent years, another complementary way to analyze To determine whether two given spaces are topologically
data was proposed, aimed at describing the topological strugquivalent is a difficult problem. The combinatorial approach
ture of the flow. For three-dimensional systems, the way ino topology consists in describing how to glue a set of build-
which the periodic orbits are knotted and linked amonging blocks in order to construct an object equivalent to the
themselves can be used in order to classify dynamic systemghe under studys].

[2,3], and successful implementations of this method were The building blocks that we mentioned above are the
obtained for real datdi.e., experimental datg1]. Yet the  n-cells, which are sets thah) can be mappedthrough a
applicability of this method is restricted both by the dimen-continuous invertible magnto the interior of am-disk, and
sionality (threg and the possibility of reconstructing good (b) have their boundaries or frontiers divided into finite num-
approximations of the unstable periodic orbits coexistingbers of lower-dimensional cells, called faces. A point then is
with the strange attractdfong time series data and reason- 3 0-cell, a line segment joining two points is a 1-cell, etc.
ably free of noisg In order to overcome these difficulties, it Cells can be assembled into a complex, which is a finite set
was proposed to analyze the structure of the invariant manppf cells such thata) the faces of the cells are elements of the
fold on which the data lie by means of other topological complexes andb) the interiors of two cells in a complex do
invariants, namely its set of homology groups. Periodic anchot intersect. The dimension of a complex is the dimension
quasiperiodic solutions were studied in this Way. of its highest-dimensional cell. A two-dimensional complex

We build on the previous efforts mentioned above, imple-is said to be oriented if each 1-cell is given a directitre
menting a way to decompose the invariant manifold associedge point of which is terminalas well as each 2-cell
ated to a chaotic solution under study in building blocks.(clockwise or anticlockwise
These building blocks constitute complexes, and algorithmi- A directed complex allows us to define integral chains,
cally we handle the gluing prescriptions followed to as-which are sumL=a;o,+---ta,o,, with o; and a; (i
semble them. The description of the complgvhich turns =1,...n), k-cells, and integers, respectively. We can de-
out to be a rough skeleton of the manifold visited by thefine a sum ofk-cells in a directed complex by adding the
chaotic trajectory is performed by means of homologies, coefficients, and therefore thechains in a complex can be
chain groups, and explicit boundary maps. dressed with a group structure. In other words, given a di-

IIl. HOMOLOGIES
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rected complexK, C,(K) denotes the groups of all the to build all the homology groups quite easily. The basic steps

k-chains fork=0,1, . .. dim(K). This group constitutes our to compute them are as follows:

first step toward building algebraic structures that will allow (i) Reading the list of vertices of every cell to construct a

us to characterize the set under study. matrix representation of the boundary maps, taking into ac-
So far we have dealt with building blocKsells). But in  count that the cells need not be simpléi) computing the

order to assemble the complex, we have to describe how B, groups as thélattice) linearly independent rows of these

glue the blOCkifor example, which pOint face of a 1-cell has boundary map matriceﬁji) Ca|cu|ating thik groups as the

to be attached to a given cell, or which 1-cell is shared byny|| spaces of the transpose of the boundary map matrices;

two given 2-cell$. The first step toward this description is (iv) expressing the elements B, (thek-border3 in terms of

then to be able to.pick the faces of a given cgll. This can b?he elements oZ, (thek-cycles, so as to find whiclk-cycles
achieved by what is called a boundary mapwhich returns, are homologous to other;) appending irH, thosek-cycles

when applied to a given cell, the chain of all thie{1)-cells that are homologically independeriy;i) if the cells of the

that are its faces. One can extend the action of the map t : : ;
kchains trivially, We denote by:Cy(K)—Cy_y(K) the 8omplex have all the same orientati@s will result from the

. : algorithm in Sec. IV, the torsion properties of the complex
map in which " . .
are calculated by the recognition of integer multiples of
chains within the chain summing up all tkeborders of the
complex. Let us call these chains the orientability chains.
(1) Notice that stepvi) renders the description of the topo-
logical properties of the manifold more complete, since ho-
mology groups do not tell, for instance, a cylinder from a

This map will allow us to pick up specifik-chains, namely, Moebius strip, while the identification of the orientability
the ones such that(C)=0. These are calle-cycles and chains does provide this distinction. In the Appendix, an ex-
are denoted by, . Among thek-cycles, we can distinguish ample is spelled out. In the following section, we will com-
the ones that are borders of a higher-dimensional cell, angute explicitly the chain, boundary, cyclic, and homology
we call the set of all these cycles the boundary gr@yp  groups for several simple complexes, which are of major
Notice that these algebraic tools will allow us to identify the interest in dynamics. These examples will enable us to be-
“holes” in our set(a hole is a cycle that is not the border of come familiar with the definitions stated above, as well as
a higher-dimensional cellFinally, we call twok-chains ho-  with the calculations that we will be reporting throughout
mologous ifC;—C,=4d(D) for some k+1)-chainD. The this work.

group of equivalence of elements &f with the homology

relation is called the homology grou,(K). The main mo-

(9(C=a10'1+‘ . '+an0'n):a1(7(0'l)+ R +an(9(0'n)

tivation for introducing this equivalence relation is to build 11l. BRANCHED MANIEOLDS AND TEMPLATES
an algebraic structure that does not depend on the complex
used to model the object under study. In the early 1980s, Birman and Williams introduced the

A convenient way of denoting cells in a complex is to idea of knot holders, which are branched manifolds able to
provide a list of the vertices of each cell. The ordering of thehold all the periodic orbits coexisting in a hyperbolic invari-
vertices produces a natural orientation, which contributes tant sef 7]. They introduced this structure as the result of an
the description of a directed complex. Let us denote dy) equivalence relation between points in the invariant set de-
the vertex or O-cellvy; (vg,v;) would be the edge of a fined as follows: two points are equivalent if they belong to
1-cell running fromuvg, to v, and so on. There are often the stable manifold of some point in the invariant set. This
advantagegusually theoretical and not practi¢ah using  collapse would not affect periodic orbitsvo periodic orbits
simplex complexes, i.e., complexes built up withcells  obviously do not have the same futurEven if the definition
(called k-simplex that have exacthk+ 1 vertices. Thus, if of these objects is performed in the context of hyperbolic
the complex is simplex, the number of vertices of a simplexsets, many highly dissipative flows containing strange attrac-
tells one immediately the dimension of the cell. This greatlytors display a “mask” structure that closely resemble a knot
simplifies, for instance, the computation of the homologyholder.
groupsHy. In the 1990s, it was proposed that building knot holders

From the definition of the homology groups, it is clear compatible with the unstable periodic orbits coexisting with
that the construction of these layered invaridiig(K)] can  a strange attractor could help us to understand the geometric
be obtained algorithmically once the boundary maps of anechanisms responsible for the observed behdZ@. In
given complex are provided, whether the complex is simplexvhat follows, we will describe some branched manifolds in
or not (in fact, throughout the rest of this paper we will not terms of the layered invariants introduced in the preceding
assume that our cells are simplex. The additional complexitpection.
of an algorithm handling nonsimplex cells pays off when one Let us begin with the three manifolds displayed in Fig. 1.
attempts to describe through homologies an invariant set, all of them are compatible with a stretching and folding
we will see in Sec. IV. The algebraic manipulation of the such as are present in the suspension of a horseshof8inap
list of oriented vertices that composes each cell in the comhn the first example, the cell denoted bys attached through
plex allows us, through environments suchv@SHEMATICA,  the one-dimensional cefl to the cello with a gluing direc-
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FIG. 1. A simple branched manifold, compatible with a Smale stretching and faldiniy this branched manifold, two small disks were
removed at a point im. This elimination demonstrates the branched nature of the set, as just one disk is not enough to deplete the chosen
point from neighborgb). (c) A branched manifold with two handles afd) its cell decomposition.

tion that enlightens the folding taking place. In order to com- H,=[[P,Q:P~Q]]~2,H,=[[b,c,a—d:c~b,a—d

pute thek-homology groups of this branched manifold, we

proceed as follows. First, we compute tBg groups. The ~b]]=~2'H,=0,

O-cells areP andQ, the 1-cells are, b, ¢, andd, while the

2-cells arer and o. The action of the boundary maps on with Z the groups of integers. Therefore, this layered group
these cells is the following. Triviallyg(P)=d(Q)=0. As  structure indicates that the branched manifold has a single
the upper and lower 1-cells are identifigd a), we see that connected component, that one homologically independent
d(b)=d(c)=0. The action of the boundary map @nis loop exists that does not border any 2-cell, and that the com-
d(a)=Q—P=4(d), and therefore’(a—d)=0. The bound- plex encloses no cavities.

ary map acting on the two cells give{s)=—a+b+a The branched manifold displayed in Figb}lis similar to
—c=b—c (henceb~c), andd(r)=a+c—d (hencec~d the one described above but two small disks have been re-
—a). moved in the neighborhood of a point & The elimination

We can summarize these results in the following way: ©f these points enlightens the branched nature of the set, as
just one disk is not enough to deplete the chosen point from
neighbors. The final homology groups are

CO:[[P,Q]],C]_:[[a,b,c,d]],CZZ[[T,U']],
HOZ[[P]]%Zj-!Hl:[[blc!f_g]]%ZB!HZZO'

Zo=[[P,Q]],Z,=[[b,c,a—d]],Z,=0, Notice that while the first manifold was homologic to the
cylinder, this one is not due to the additional single loops,
which show the branched nature of the set.

Bo=[[Q—P]],B;=[[b—c,a+c—d]],B,=0. Our final example is displayed in Figsicl and 1d). Both
figures represent the same object, although the one in one
dimension(1D) contains an explicit cell decomposition that

We now take theZ, groups modulo the equivalences dic- we used to compute its homology. Proceeding as in the first
tated by theB,, which gives rise to example, we obtain the following group structure:
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Ho=[[A]]=2'H,=[[e+n,a—e+]j+k,—b—c—d—e of i the setx; best approximates ddimensional Euclidean
5 set, we inspect the distribution of the points in the>setlf
+9]]~2°H,=0. the set of points inR" is a good approximation to a

d-dimensional Euclidean set, then the square rootsaifthe
second moments of the points in a small ball of radRus
decrease linearly aB— 0, while n—d decrease to zero as
higher powers oR. In order to inspect for which value of
fh {x;,i=0---N} this property is best fulfilled, we inspect
Pthe singular values of the matrix:

The meaning of the three loops implied by tH¢ homol-
ogy group can be visualized from Fig(cL The first loop is
placed within the disk, the second one that visits the handl
glued to the external part of the disc, while the last loo
exists in the second handle.

Branched manifolds have been used in the past to identify
the geometric mechanisms responsible for the complexity of
flows. The idea was to identify in a flow the unstable orbits
closely visited by a trajectory, and to check whether those
orbits could be placed in a given branched manifold, i.e., . . . . .
whether they were compatible. In this spirit, our aim is toV.VIth ':1’.2’ ---N(Nis the number of points und.er Inspec-
study the compatibility of invariant manifolds obtained nu—t'on) andj=1.2,...n (with n the phase—s_pace dimensjon
merically with simple models. Let us remark that the ex- €& € Ko1,Xo2, . .. Xo,) are the coordinates of the cen-
amples shown above are locally two-dimensional. Yet theséersf of our cells, and the(ﬂl’xi@’ o ’,Xi,n) denote the.co'-
tools will allow us to go beyond the situations that could be°dinates of the otheN points in the file under analysis, in

addressed by analyzing the organization of periodic orpitsorder of increasing distance from the center. For different

For example, a Klein bottle is a locally two-dimensional setValues ofN, we obtain different sets of singular values. Thus
that cannot be embedded in three dimensions. we define ad-dimensional cell as the set of poir{ts; ,i =0
--N¢} for which thed largest singular values of present
the best linear regression coefficientsl {,=<N:=<Nmna0-
IV. CELL DECOMPOSITION Note that less general_criteria may als_o prove to be effective:
for the examples considered[ifi], the size of a cell could be
As mentioned in Sec. Il, our approach to describing andetermined by direct comparison of the singular values
invariant set consists in decomposing it in building blocks,(points around a center were grouped in a cell when the third
keeping track of the gluing prescriptions that are necessary tlargest singular value was smaller than a given fraction of the
assemble it. Those building blocks are cells, that is, sets thaecond largest one
are homeomorphic to the interiors dfdisks. Basically then, Once an appropriate cell decomposition is attained, the
one needs to select a sufficiently large number of points thatext step is the construction of the complex of assembled
can be used as the centers of disks enclosing their neighbogglls. In Ref.[5], an (h—1)-cell was recognized whenever
so that every point in the invariant set under study is withinthere was at least one point belonging to the intersection of
at least one cell. cells. This method has the advantage that the cells that are
We will describe our procedure, which closely follows obtained are simplice§.e., cells with a minimal number of
[5]. We take a first point, and sort the rest of the pointsfaces, which greatly simplifies the calculation of the bound-
according to their distance from the first one. A criterion isary maps. But we found that this method had several short-
chosen to define the largest radius such that the points egomings: branches of the invariant set that could be locally
closed in the set are good approximations tbdimensional  approximated by planes would give rise to filamentations
Euclidean setthe dimension of the celld being lower than  (two consecutive 2-cells would be associated to a 1)cell
or equal to the dimension of phase spageAll the points  Another problem of this method is that it disregards points
are labeled with an index that indicates their pertinence tielonging to intersections of a number of cells exceeding the
the cell based on the initial point. Successive centers argimension of the phase space, creating holes and overlaps
taken so that they are least separated from the previouskat change the homology of the set under study. These im-
chosen center, until every point in the invariant set undeperfections in the construction of the complex are serious
study is in at least one cell. In this way, we assign a set obecause they lead to a representation that will not present the
integers to each point of the set under study, which indicatesame topological properties of the invariant set under study.
the set of cells to which it belongs. In other words, the complex we attempt to construct is
Let us describe the criterion used to define the largesinerely a model of the structure of the strange attractor that
number of points considered so that the points enclosed iwe want to describe, and consequently the gluing prescrip-
the set are good approximations talaimensional Euclid- tions must preserve the topology of the original manifold.
ean set. Provided that the density of points around a given In view of these facts, we preferred to explicitly build all
center o) is approximately uniform, we choose a reason-the faces of a cell by calculating the convex hull for the
able limit for the maximum K50 and minimum N, points of the cell that provide the intersections with neigh-
number of points to be included in a cell. Next, we considerboring cells, at the expense of the simple algorithms valid for
the set of pointgX; ,i =Npmin, - - . Nmax, Wherei labels the simplices. The convex hull of a set of poirids a list with
points in the file under analysis, in order of increasing dis-fixed orientation of the vertices forming the boundary of the
tance fromx, (the center. In order to check for which value smallest set containin@. In other words, we respect the

Xi j= (X ;= Xo;) 2
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nonsimplex nature of a given cell, if this is necessary to

account for a given gluing prescription. 4
It is worth noting that in the case of a small data file,

when a region of the attractor has a very low natural measure

and thus is seldom visited, there is a chance that additional K =2
independent loops are created. If this is the case, the carica- ;'-.'.' T
ture of the attractor might depend on the data set and, con- s ' -_
sequently, all we can achieve is an identification of compat- L e .
ibility of the reconstructed branched manifold with one Ny et
associated to a specific stretching and folding mechanism. s." g § R
\.-.'..
V. TOY MODEL | Ty 7 H"{"
A . 11
In Sec. Ill, we reported the calculation of the homology 0f Yot § . §§;
groups for different branched manifolds. Now we want to ‘a* jis
proceed to compute these quantities from data. In this sec- -l |, "5.;: ..,.f.-'f.-"f
tion, we will deal with an easy case: data coming from a o, .,..::..;;'{ef."'
numerical experiment, free of noise. Moreover, instead of :,3;--...5'::""-’-':.':'-:-';'&:"&?!’
studying a standard test bench for nonlinear dynarsash -4 "%’W
as the Rossler equations or the Lorenz onee will work et EEE—

with the flow that is obtained after the integration of the
following set of ordinary differential equation9]:

X'=—(z+2)d(x—a)+(2—2){a(x—2)— By —a(x—2)
X[(x—2)%+y?IR?]},

y'=—(z+2)(y—b)+(2-2){B(x—2) — ay— ay[ (x—2)?
+y?/R?]}, €)

€z’ =(4—7%)[z+2—m(x+2)]—ecz

with the parameter values listed in the caption of Fig. 2. This
system was chosen for the following reason: its dynamics
consists on a fast alternation between two dynamical regimes
(one withz~2 and another one with~ —2), as in a stan-
dard relaxation oscillation. In each of the two dimensional
manifolds in which the system exists most of the time, the
behavior can be easily prescribfid this case, the system e e e e e
evolves to a stable fixed point at(,y,,z,) ~ (&, b, 2) in -2 0 2 4
the upper branch , which can never be reached, while in the () X

lower branch the flow is ruled by an unstable focus at g, 2. The strange attractor generated by the integration of the

(x1,y1,2)) = (2, 0, —2)]. This is an example of a system- system of Eq.(2), with the following set of parametersi=7, b

atic way [8] to construct homoclinic attractors and chaotic =1.435,¢=1, d=1.5, m=1.543,R=6, a=0.5, B=4, e=0.15

flows: in our case, it helps us to build chaotic flows with (a). Display of 11 cells obtained by joining the vertices that were

desired topological properties. Notice that with properly cho-selected in Sec. IV.

sen parameters, this system should present chaotic solutions

of a Shilnikov-type, as it consists of a “switch” that reinjects tively approximated by a linear function in terms of the num-

the flow expelled by gsaddle focus back to its neighbor- ber of points forming the smallest admissible cell. For this

hood along its one-dimensional attracting manifold. toy model,d=2 while n=3 because the system treated is
In Fig. 2(b), we display a set of 11 patches. Each is thevery dissipative, but nothing prevents the construction of

result of joining the vertices that were selected as mentionedomplexes in the case of manifolds for which cells live in a

in Sec. IV. They constitute a rough caricature of the strangéuclidean space of the same dimension of phase space. This

attractor displayed in Fig.(2), but reflect the way in which criterion allows us to decompose the invariant set in 22

the covering cells are connected. 2-cells. Notice that in Fig. @), only 11 are displayed for
As mentioned in Sec. IV, we chose a criterion to definesimplicity (they constitute a complex of the same homologi-

the largest radius so that the points enclosed in the set awmal type as the original one

good approximations to d-cell. The dimensiord is pro- The vertices of the 2-cells displayed are arbitrarily la-

vided by the number of singular values that can be effecheled with numbers from 1 to 26, as shown in Table I. From
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TABLE I. Vertices of the oriented cells corresponding to the cell the approach: a closed curve is no longer knotted in a space

decomposition of the strange attractor shown in Fig).2 of dimension larger than 3. Even flows as simple as the ones
: that can take place on a Klein bottle cannot be studied with
Cell Vertices knot theoretical tools; a Klein bottle, which is a locally two-
1 28.1.2.3.4.512 dlr_nen5|onal pbject, cannot be embedded in three dimensions
5 123 (without self-intersections
3 4 5’8‘6 3 Our second example consists therefore of a chaotic flow
DA that is built, as in the previous case, by dynamically connect-
4 5,8,17,20,19 . S . . -
5 8171811107 296 ing ;Iow building blocks Wlth simple dynamics. The dy-
DI e namic system under study is
6 7,29,6
7 10,9,7
8 10,9,24,23,21,22,25,26,27,16 X'=—(z+ 2)d{x—[a+ 63(2+W)]}+(2—Z){a(x—2)
9 21,22,19,20 2., ,2/1p2
—By—a(x— —2)°+
” 29,2512 By~ a(x=2)[(x=2)"+y“ IR},
11 25,28,12,13,14,15,16,27,26

y'==(z+2)(y=-b)+(2-2){B(x=2)~ay (4

this table, one can compute thechain groups, theB,
groups, etc. But as we mentioned in Sec. Il, a geometric
description of the gluing of tha-cells, which is independent
of the particular cell decomposition, can only be achieved
through the calculation of the homologies. The content of
Table | is enough to determine that thehomology groups
(H,s) of this complex are

—ay[(x—2)%+y*IR?]},
€,2'=(4—2%)[z+2—m(x+2)]— €€z
W' =(4—22)[z+2—m(x+2)]— e,czZ

with parameter values given in the caption of Fig. 3. The
flow generated by this set of equations is such taat@any
three-dimensional projection of it presents self-intersections,
and (b) the flow can be locally approximated by two-
where Z is generated by one of the verticéfser example,  dimensional patchesd&2). The geometric prescription to
[26]), and the three loops &1, are generated by the follow- create this flow is to induce an oscillation in the coordinates
ing cycles, written as oriented 1-chains: the first loof{s  of the point that attracts the trajectories in the upper branch
= (34—-(3.6+(45+(58—(6,7) —(7,9+(8,17)  of the fast manifold £~2). Therefore, one expects a flow
—(9,24+(17,20 +(20,2D +(21,23 +(23,24, the second that is not completely unrelated to the previous one: the disk
one is L,=—(1,2+(1,3—(2,22+(3,4+(45+(519 for z=—2 and the existence of a small branch from this
+(19,22, and the third one isL;=(3,4—(3,6+(4,5 central disk into itself should be preserved. On the other
+(5,12—(6,7— (7,10 — (10,16 +(12,13 + (13,1 hand, it is reasonable to expect a higher degree of complex-
+(14,15+(15,16. ity, as a new dynamic ingredient was added.

In summary, an analysis of the complex built from gluing  Table Il contains the vertices of the 11 cells displayed in
the cells that locally cover the data indicates that the dynamrFig. 3(b) (with the vertices arbitrarily labeled from 1 to 24).
ics takes place close to a branched manifold constituted byt is worth remarking that, even if Fig. 3 displays a three-
only one connected piece, in which three nonequivalentiimensional projection of the strange attractor, the construc-
(through homologyloops exist, and that it encloses no cavi- tion of the complex of cells and the calculation of the ho-
ties. The explicit construction of the loops that genetdie  mology groups are entirely performed in four dimensions
allows us to unveil the structure of the branched manifold: it(x,y,z,w); in other words, results are completely indepen-
consists of a disk on which two strips are attached. Thiglent of the projection, chosen with the sole aim of illustrat-
should be compared with our third theoretical example ining our example. From the information in this table, one can

Ho~Z,H,;~ 23 H,~0,

Sec. lll. compute the homology groups describing the complex
(through calculations such as the one explained in detail in
VI. TOY MODEL II the Appendiy. This gives rise to
As mentioned in the Introduction, the topological ap- Ho~2ZH,;~2*H,~0,

proach to the study of chaotic time series data was based on
the description of the organization of the periodic solutionswhich indicates that there is one connected component,
visited by the trajectory under study. Knot theoretical toolsno cavities, and four loops. In terms of the vertices written
were used to characterize this organization, which couldn the table, these four closed paths are as follows: the
eventually be summarized by the description of the templatefirst loop L;=(7,9—(7,13+(9,15—(13,14—(14,16
that were able to hold the periodic solutions. +(15,16, the second loopL,=—(7,9+(7,13—(9,10

The price to be paid for the elegance that knot theory adds- (10,22 +(13,14 + (14,22, the third loop L3=—(3,4)
to the field is a strong restriction of the range of validity of +(3,7)—(4,5— (5,23 +(7,9+(9,10 +(10,23, and the
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FIG. 3. The three-dimensional projectior,y,z) of the strange
attractor generated by the integration of the system of E&jswith
the following set of parameterse=7, d=0.5, «a=0.3, B=7, €;
=0.165,¢€,=0.01, e3=2 (a). Display of the 11 cells making up the
complex obtained as explained in Sec. (.
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TABLE Il. Vertices of the oriented cells corresponding to the
cell decomposition of the chaotic flow shown in Fig. 3.

Cell \ertices

1,2,3,45,6
4,3,7,8
8,7,9
9,10,11,12,1,6,5,8
7,9,15,14,13
9,15,16,17
17,16,14,13,18
14,13,19,20,21,22
21,22,10,9
6,5,23,24
24,11,10,23

© 0O ~NO LD WN PP

e
P o

VII. CONCLUSIONS

The analysis of time-series data has been deeply enriched
by the tools of nonlinear dynamics. Once that complexity is
found to be compatible with simple deterministic rules, the
analysis of complex time-series data has to addi@ss
whether the system is being ruled by a simple deterministic
prescription;(b) if this is the case, whether it possible to
model this rule; and finallyc), how to refute or validate a
model. Along these lines, a topological approach toward
time-series data consists in finding the branched manifolds
that could hold all the periodic orbits found to coexist with
given complex time-series data. This approach has two major
shortcomings:(a) the dimensionality of the system under
study was bound to be lower than or equal tgsBice the
compatibility between the flow and the branched manifold
was determined through the knot properties of the periodic
orbits in either cage and(b) the size of the data file had to
be large enough to enable us the reconstruction of several
periodic orbits[10,11].

In this work, we describe branched manifolds through ho-
mologies. This allows us to study situations in which the
flows exist in manifolds of dimension larger than 3, as well
as reasonably small time-series déta the method does not
rely on the characterization of periodic orBit®©ur calcula-
tions begin by building complexes that summarize how to
glue the cells that approximate the data. Codes that manipu-
late algebraically this information allow us to identify chain
groups, boundary maps, cyclic groups, and homology
groups. We can also explicitly build the generators of those
groups and determine the orientability of the complex

fourth loopL ,=(4,5 — (4.8 +(5,8). One corresponds to the ,:5ugh the definition and calculation of the orientability
path around the hole of a central disk. The other three exigtpains.

along the three branches of the complex, one of which rein- |, this work, we wrote the homological description of
jects flow from the outer region of the central disk t0 itS three pranched manifolds, as well as the complexes approxi-

inner part, and the other two stretch and fold the flow at thénating numerical flowgof three- and four-dimensional sys-
outer part of the central disk to reinject it. Notice that theiemg, respectively

geometry does not seem to be that different from what was
obtained in the example of the preceding section. The main
difference is that in the present case, one of the two branches
that emerges from the central disk bifurcates in two strips, This work has been partially funded by Fundaciantor-
one of which twists before gluing. chas, UBA(EX290), CEE(CI1 CT93-033}, and CONICET.

ACKNOWLEDGMENTS

036209-7



DENISSE SCIAMERELLA AND G. B. MINDLIN PHYSICAL REVIEW E64 036209

1 1 the vertices of the 2-cell. In our example, the transpose of the
second matrix ') is equal to
o (1,3,78,6,2 (3,74 (4,752 (6,875
—> 7 (1,2) -1 0 -1 0
y 7 (1,3 1 0 0 0
(1,4 0 0 1 0
(2,5 0 0 -1 0
) 6 5 (2,6 -1 0 0 0
(3,49 0 -1 0 0
(3,7 1 1 0 0
FIG. 4. Arbitrary cell decomposition of a cylinder with its non- (4,7) 0 -1 1 0
simplex complex. Vertices are numbered from 1 to 8. (5,6 0 0 0 1
Discussions with S. Ponce Dawson and |. Loisseau ar%s’7> 0 0 -1 -1
acknowledged. We thank Bob Gilmore for enlightening 6.8) -1 0 0 1
comments. : 1 0 0 -1
APPENDIX (i) To calculateB,, one just needs the linearly indepen-

dent rows of the matribM. In the example of the cylinder,

Let us list the basic steps to compute the homologythe rows ofM are linearly independent, and thBs consists
groups through a simple example. Figure 4 shows an arbiof the four 1-chains listed as columns above.
trary cell decomposition of a cylinder, which gives rise to a (jii) The 1-cycles are the null space of the transpose of the
nonsimplex complex in which the vertices have been labelegrst matrix. In our example, this calculation renders five 1-
Il to calculateBy, Z,, andH, for k=1. Z,=[[-(1,2+(1,3—(2,6)+(3,7) — (6,8 + (7,8, + (1,2

(i) The list of vertices present in Fig. 4 is summarized in (1 3y 1 (2 5~ (3 7)+(5,7), +(2,5 —(2,6)+(5,6), (1,3
Table lll. In order to represent algebraically the boundary+<1’4>_<3’7>+<4’7>’+<1’3>_<1'4>+<3,4>]].
maps of this complex, one needs two matrices: In the first (iv) Expressing now the elements Bf as linear combi-
matrix, every 0-cell or vertex is assigned a column. The rowsyations of the elements @, one obtains chains of 1-cycles
correspond to the 1-cells. As the action of the operaton  that by definition are homologous to zero. This establishes
an oriented 1-cell yields the terminal vertex minus the initialnomology relations between the 1-cycles, which one must
vertex, the rows of this matrix are vectors with a 1 in thegke into account to obtaiH .

column corresponding to the terminal vertex and & in the (v) With the relations obtained in stefjv), one can con-
column of the initial point. In the case of our cylinder, this ¢jyde that of the five 1-cycles, only one is homologically
matrix reads independent. In other words, the homology relations tell us

that the first four 1-cycles are homologous to the Iasty

J 1 2 3 4 S 6 7 8 information carried by the first loops is also carried by the
(12 -1 1 0 0 0 0 0 0 last. The final result is
(1% -1 0 1 0 0 0 0 0
(14 -1 0 0 1 0 0 0 0 Hi=[[+(1,3 (1.4 +(3,4]]
(29 0 -1 0 0 1 0 0 0 with a group structured;~ Z, which reveals that there is
(26 0 -1 0 0 0 1 0 0  only one nontrivial loop in a cylinder. This conclusion is
(34 0 0 -1 1 0 0 0 0 independent of the particular cell decomposition we have
3 0 0 1 0 0 0 1 0 chosen, as it denotes a geometric property of the cylinder
(3.7
4n o o O -1 0 0 1 o @Iself
(56 0 0 0 0 -1 0 0 TABLE IlIl. Vertices of the oriented cells corresponding to the
57 0 0 0 0 -1 0 1 0 cell decomposition of the cylinder shown in Fig. 4.
(6,8 0 0 0 0 0 -1 0 1
(7,8 0 0 0 0 0 0 -1 1 Cell Vertices

1 1,3,7,8,6,2

In the second matrix, every 1-cell is assigned a column as 2 3,7,4

the rows correspond to the 2-cells. The border of a 2-cell is 3 4,75.2,1
a chain of 1-cells with sign- if the direction of the 1-cell is 4 6,8,7,5
consistent with the clockwise or anticlockwise orientation of
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