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Unveiling the topological structure of chaotic flows from data
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We report the analysis of branched manifolds through homologies, in order to extend the range of applica-
bility of the topological approach to the analysis of chaotic data. Analytic and numerical cases are discussed.
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I. INTRODUCTION

Some of the results obtained by dynamicists in the pas
years have had a profound impact in the natural scien
particularly, the idea that simple deterministic rules cou
give rise to complex, long-term unpredictable behav
~chaos! @1#. Since then, we have been faced with two ma
challenges when dealing with chaotic data: how to unveil
simple deterministic rule mentioned above, and how to v
date it from the data.

One of the most popular approaches to analyzing cha
data is of a metric nature. The stretching and squeezin
phase space associated with the mechanism responsib
the hypersensitivity to initial conditions give rise to fract
properties of the invariant set to which the observed tra
tory belongs. A quantity describing this fractality~e.g., frac-
tal dimension! can be an important way to estimate the nu
ber of relevant variables affecting the deterministic rule,
degree of complexity, etc. Yet it does not enlighten the g
metric nature of the rule@1#.

In recent years, another complementary way to anal
data was proposed, aimed at describing the topological st
ture of the flow. For three-dimensional systems, the way
which the periodic orbits are knotted and linked amo
themselves can be used in order to classify dynamic syst
@2,3#, and successful implementations of this method w
obtained for real data~i.e., experimental data! @1#. Yet the
applicability of this method is restricted both by the dime
sionality ~three! and the possibility of reconstructing goo
approximations of the unstable periodic orbits coexist
with the strange attractor~long time series data and reaso
ably free of noise!. In order to overcome these difficulties,
was proposed to analyze the structure of the invariant m
fold on which the data lie by means of other topologic
invariants, namely its set of homology groups. Periodic a
quasiperiodic solutions were studied in this way@5#.

We build on the previous efforts mentioned above, imp
menting a way to decompose the invariant manifold ass
ated to a chaotic solution under study in building bloc
These building blocks constitute complexes, and algorith
cally we handle the gluing prescriptions followed to a
semble them. The description of the complex~which turns
out to be a rough skeleton of the manifold visited by t
chaotic trajectory! is performed by means of homologie
chain groups, and explicit boundary maps.
1063-651X/2001/64~3!/036209~9!/$20.00 64 0362
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We report the study of two chaotic solutions~one of them
the result of integrating numerically a three-dimensional
of ordinary differential equations, the second one from
four-dimensional system!. A study of experimental data from
the human voice~pressure fluctuations as a voiced sound
pronounced! has been reported in@4#.

This paper is organized as follows. In Sec. II, we provi
a summary of the mathematical background needed to fol
this work. In Sec. III, we review the role of templates
analyzing chaotic data and describe some of these bran
manifolds in terms of homologies. Section IV contains a d
scription of the way in which we perform our cell decomp
sition. In Secs. V and VI, we report the study of two chao
solutions~one of them the result of integrating numerically
three-dimensional ordinary differential equation, the seco
one from a four-dimensional system!. We close our work
with Sec. VII, in which we report our conclusions.

II. HOMOLOGIES

To determine whether two given spaces are topologic
equivalent is a difficult problem. The combinatorial approa
to topology consists in describing how to glue a set of bui
ing blocks in order to construct an object equivalent to
one under study@6#.

The building blocks that we mentioned above are
n-cells, which are sets that~a! can be mapped~through a
continuous invertible map! into the interior of ann-disk, and
~b! have their boundaries or frontiers divided into finite num
bers of lower-dimensional cells, called faces. A point then
a 0-cell, a line segment joining two points is a 1-cell, e
Cells can be assembled into a complex, which is a finite
of cells such that~a! the faces of the cells are elements of t
complexes and~b! the interiors of two cells in a complex d
not intersect. The dimension of a complex is the dimens
of its highest-dimensional cell. A two-dimensional compl
is said to be oriented if each 1-cell is given a direction~the
edge point of which is terminal! as well as each 2-cel
~clockwise or anticlockwise!.

A directed complex allows us to define integral chain
which are sumsC5a1s11•••1ansn , with s i and ai ( i
51, . . . ,n), k-cells, and integers, respectively. We can d
fine a sum ofk-cells in a directed complex by adding th
coefficients, and therefore thek-chains in a complex can b
dressed with a group structure. In other words, given a
©2001 The American Physical Society09-1
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rected complexK, Ck(K) denotes the groups of all th
k-chains fork50,1, . . . ,dim(K). This group constitutes ou
first step toward building algebraic structures that will allo
us to characterize the set under study.

So far we have dealt with building blocks~cells!. But in
order to assemble the complex, we have to describe ho
glue the blocks~for example, which point face of a 1-cell ha
to be attached to a given cell, or which 1-cell is shared
two given 2-cells!. The first step toward this description
then to be able to pick the faces of a given cell. This can
achieved by what is called a boundary map,], which returns,
when applied to a given cell, the chain of all the (k21)-cells
that are its faces. One can extend the action of the ma
k-chains trivially. We denote by]:Ck(K)→Ck21(K) the
map in which

]~C5a1s11•••1ansn!5a1]~s1!1•••1an]~sn!.
~1!

This map will allow us to pick up specifick-chains, namely,
the ones such that](C)50. These are calledk-cycles and
are denoted byZk . Among thek-cycles, we can distinguish
the ones that are borders of a higher-dimensional cell,
we call the set of all these cycles the boundary groupBk .
Notice that these algebraic tools will allow us to identify t
‘‘holes’’ in our set ~a hole is a cycle that is not the border
a higher-dimensional cell!. Finally, we call twok-chains ho-
mologous ifC12C25](D) for some (k11)-chainD. The
group of equivalence of elements ofZk with the homology
relation is called the homology groupHk(K). The main mo-
tivation for introducing this equivalence relation is to bui
an algebraic structure that does not depend on the com
used to model the object under study.

A convenient way of denoting cells in a complex is
provide a list of the vertices of each cell. The ordering of t
vertices produces a natural orientation, which contribute
the description of a directed complex. Let us denote by^v0&
the vertex or 0-cellv0 ; ^v0 ,v1& would be the edge of a
1-cell running fromv0 to v1, and so on. There are ofte
advantages~usually theoretical and not practical! in using
simplex complexes, i.e., complexes built up withk-cells
~called k-simplex! that have exactlyk11 vertices. Thus, if
the complex is simplex, the number of vertices of a simp
tells one immediately the dimension of the cell. This grea
simplifies, for instance, the computation of the homolo
groupsHk .

From the definition of the homology groups, it is cle
that the construction of these layered invariants@Hk(K)# can
be obtained algorithmically once the boundary maps o
given complex are provided, whether the complex is simp
or not ~in fact, throughout the rest of this paper we will n
assume that our cells are simplex. The additional comple
of an algorithm handling nonsimplex cells pays off when o
attempts to describe through homologies an invariant se
we will see in Sec. IV!. The algebraic manipulation of th
list of oriented vertices that composes each cell in the co
plex allows us, through environments such asMATHEMATICA ,
03620
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to build all the homology groups quite easily. The basic ste
to compute them are as follows:

~i! Reading the list of vertices of every cell to construc
matrix representation of the boundary maps, taking into
count that the cells need not be simplex;~ii ! computing the
Bk groups as the~lattice! linearly independent rows of thes
boundary map matrices;~iii ! calculating theZk groups as the
null spaces of the transpose of the boundary map matri
~iv! expressing the elements ofBk ~thek-borders! in terms of
the elements ofZk ~thek-cycles!, so as to find whichk-cycles
are homologous to others;~v! appending inHk thosek-cycles
that are homologically independent;~vi! if the cells of the
complex have all the same orientation~as will result from the
algorithm in Sec. IV!, the torsion properties of the comple
are calculated by the recognition of integer multiples
chains within the chain summing up all thek-borders of the
complex. Let us call these chains the orientability chains

Notice that step~vi! renders the description of the topo
logical properties of the manifold more complete, since h
mology groups do not tell, for instance, a cylinder from
Moebius strip, while the identification of the orientabilit
chains does provide this distinction. In the Appendix, an
ample is spelled out. In the following section, we will com
pute explicitly the chain, boundary, cyclic, and homolo
groups for several simple complexes, which are of ma
interest in dynamics. These examples will enable us to
come familiar with the definitions stated above, as well
with the calculations that we will be reporting througho
this work.

III. BRANCHED MANIFOLDS AND TEMPLATES

In the early 1980s, Birman and Williams introduced t
idea of knot holders, which are branched manifolds able
hold all the periodic orbits coexisting in a hyperbolic inva
ant set@7#. They introduced this structure as the result of
equivalence relation between points in the invariant set
fined as follows: two points are equivalent if they belong
the stable manifold of some point in the invariant set. T
collapse would not affect periodic orbits~two periodic orbits
obviously do not have the same future!. Even if the definition
of these objects is performed in the context of hyperbo
sets, many highly dissipative flows containing strange attr
tors display a ‘‘mask’’ structure that closely resemble a kn
holder.

In the 1990s, it was proposed that building knot holde
compatible with the unstable periodic orbits coexisting w
a strange attractor could help us to understand the geom
mechanisms responsible for the observed behavior@2,3#. In
what follows, we will describe some branched manifolds
terms of the layered invariants introduced in the preced
section.

Let us begin with the three manifolds displayed in Fig.
All of them are compatible with a stretching and foldin
such as are present in the suspension of a horseshoe ma@8#.
In the first example, the cell denoted byt is attached through
the one-dimensional cella to the cells with a gluing direc-
9-2
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FIG. 1. A simple branched manifold, compatible with a Smale stretching and folding~a!. In this branched manifold, two small disks we
removed at a point ina. This elimination demonstrates the branched nature of the set, as just one disk is not enough to deplete th
point from neighbors~b!. ~c! A branched manifold with two handles and~d! its cell decomposition.
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tion that enlightens the folding taking place. In order to co
pute thek-homology groups of this branched manifold, w
proceed as follows. First, we compute theCk groups. The
0-cells areP andQ, the 1-cells area, b, c, andd, while the
2-cells aret and s. The action of the boundary maps o
these cells is the following. Trivially,](P)5](Q)50. As
the upper and lower 1-cells are identified~in a), we see that
](b)5](c)50. The action of the boundary map ona is
](a)5Q2P5](d), and therefore](a2d)50. The bound-
ary map acting on the two cells gives](s)52a1b1a
2c5b2c ~henceb'c), and ](t)5a1c2d ~hencec'd
2a).

We can summarize these results in the following way:

C05@@P,Q##,C15@@a,b,c,d##,C25@@t,s##,

Z05@@P,Q##,Z15@@b,c,a2d##,Z250,

B05@@Q2P##,B15@@b2c,a1c2d##,B250.

We now take theZk groups modulo the equivalences di
tated by theBk , which gives rise to
03620
- H05@@P,Q:P;Q##'Z1,H15@@b,c,a2d:c;b,a2d

;b##'Z1,H250,

with Z the groups of integers. Therefore, this layered gro
structure indicates that the branched manifold has a sin
connected component, that one homologically independ
loop exists that does not border any 2-cell, and that the c
plex encloses no cavities.

The branched manifold displayed in Fig. 1~b! is similar to
the one described above but two small disks have been
moved in the neighborhood of a point ina. The elimination
of these points enlightens the branched nature of the se
just one disk is not enough to deplete the chosen point fr
neighbors. The final homology groups are

H05@@P##'Z1,H15@@b,c, f 2g##'Z3,H250 .

Notice that while the first manifold was homologic to th
cylinder, this one is not due to the additional single loo
which show the branched nature of the set.

Our final example is displayed in Figs. 1~c! and 1~d!. Both
figures represent the same object, although the one in
dimension~1D! contains an explicit cell decomposition th
we used to compute its homology. Proceeding as in the
example, we obtain the following group structure:
9-3
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DENISSE SCIAMERELLA AND G. B. MINDLIN PHYSICAL REVIEW E64 036209
H05@@A##'Z1,H15@@e1n,a2e1 j 1k,2b2c2d2e

1g##'Z3,H250.

The meaning of the three loops implied by theH1 homol-
ogy group can be visualized from Fig. 1~c!. The first loop is
placed within the disk, the second one that visits the han
glued to the external part of the disc, while the last lo
exists in the second handle.

Branched manifolds have been used in the past to iden
the geometric mechanisms responsible for the complexit
flows. The idea was to identify in a flow the unstable orb
closely visited by a trajectory, and to check whether tho
orbits could be placed in a given branched manifold, i
whether they were compatible. In this spirit, our aim is
study the compatibility of invariant manifolds obtained n
merically with simple models. Let us remark that the e
amples shown above are locally two-dimensional. Yet th
tools will allow us to go beyond the situations that could
addressed by analyzing the organization of periodic orb
For example, a Klein bottle is a locally two-dimensional s
that cannot be embedded in three dimensions.

IV. CELL DECOMPOSITION

As mentioned in Sec. II, our approach to describing
invariant set consists in decomposing it in building bloc
keeping track of the gluing prescriptions that are necessar
assemble it. Those building blocks are cells, that is, sets
are homeomorphic to the interiors ofn-disks. Basically then,
one needs to select a sufficiently large number of points
can be used as the centers of disks enclosing their neigh
so that every point in the invariant set under study is wit
at least one cell.

We will describe our procedure, which closely follow
@5#. We take a first point, and sort the rest of the poi
according to their distance from the first one. A criterion
chosen to define the largest radius such that the points
closed in the set are good approximations to ad-dimensional
Euclidean set~the dimension of the cellsd being lower than
or equal to the dimension of phase spacen). All the points
are labeled with an index that indicates their pertinence
the cell based on the initial point. Successive centers
taken so that they are least separated from the previo
chosen center, until every point in the invariant set un
study is in at least one cell. In this way, we assign a se
integers to each point of the set under study, which indica
the set of cells to which it belongs.

Let us describe the criterion used to define the larg
number of points considered so that the points enclose
the set are good approximations to ad-dimensional Euclid-
ean set. Provided that the density of points around a gi
center (x0) is approximately uniform, we choose a reaso
able limit for the maximum (Nmax) and minimum (Nmin)
number of points to be included in a cell. Next, we consid
the set of points$xi ,i 5Nmin , . . . ,Nmax%, wherei labels the
points in the file under analysis, in order of increasing d
tance fromx0 ~the center!. In order to check for which value
03620
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of i the setxi best approximates ad-dimensional Euclidean
set, we inspect the distribution of the points in the setxi . If
the set of points inRn is a good approximation to a
d-dimensional Euclidean set, then the square roots ofd of the
second moments of the points in a small ball of radiusR
decrease linearly asR→0, while n2d decrease to zero a
higher powers ofR. In order to inspect for which value ofN
in $xi ,i 50•••N% this property is best fulfilled, we inspec
the singular values of the matrix:

Xi , j5~xi , j2x0,j ! ~2!

with i 51,2, . . . ,N (N is the number of points under inspe
tion! and j 51,2, . . . ,n ~with n the phase-space dimension!.
Here, the (x0,1,x0,2, . . . ,x0,n) are the coordinates of the cen
ters of our cells, and the (xi ,1 ,xi ,2 , . . . ,xi ,n) denote the co-
ordinates of the otherN points in the file under analysis, in
order of increasing distance from the center. For differ
values ofN, we obtain different sets of singular values. Th
we define ad-dimensional cell as the set of points$xi ,i 50
•••Nc% for which thed largest singular values ofX present
the best linear regression coefficients (Nmin<Nc<Nmax).
Note that less general criteria may also prove to be effect
for the examples considered in@4#, the size of a cell could be
determined by direct comparison of the singular valu
~points around a center were grouped in a cell when the t
largest singular value was smaller than a given fraction of
second largest one!.

Once an appropriate cell decomposition is attained,
next step is the construction of the complex of assemb
cells. In Ref.@5#, an (n21)-cell was recognized wheneve
there was at least one point belonging to the intersectionn
cells. This method has the advantage that the cells that
obtained are simplices~i.e., cells with a minimal number o
faces!, which greatly simplifies the calculation of the boun
ary maps. But we found that this method had several sh
comings: branches of the invariant set that could be loc
approximated by planes would give rise to filamentatio
~two consecutive 2-cells would be associated to a 1-ce!.
Another problem of this method is that it disregards poi
belonging to intersections of a number of cells exceeding
dimension of the phase space, creating holes and over
that change the homology of the set under study. These
perfections in the construction of the complex are serio
because they lead to a representation that will not presen
same topological properties of the invariant set under stu
In other words, the complex we attempt to construct
merely a model of the structure of the strange attractor
we want to describe, and consequently the gluing presc
tions must preserve the topology of the original manifold

In view of these facts, we preferred to explicitly build a
the faces of a cell by calculating the convex hull for t
points of the cell that provide the intersections with neig
boring cells, at the expense of the simple algorithms valid
simplices. The convex hull of a set of pointsS is a list with
fixed orientation of the vertices forming the boundary of t
smallest set containingS. In other words, we respect th
9-4
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UNVEILING THE TOPOLOGICAL STRUCTURE OF . . . PHYSICAL REVIEW E 64 036209
nonsimplex nature of a given cell, if this is necessary
account for a given gluing prescription.

It is worth noting that in the case of a small data fi
when a region of the attractor has a very low natural meas
and thus is seldom visited, there is a chance that additio
independent loops are created. If this is the case, the ca
ture of the attractor might depend on the data set and, c
sequently, all we can achieve is an identification of comp
ibility of the reconstructed branched manifold with on
associated to a specific stretching and folding mechanism

V. TOY MODEL I

In Sec. III, we reported the calculation of the homolo
groups for different branched manifolds. Now we want
proceed to compute these quantities from data. In this
tion, we will deal with an easy case: data coming from
numerical experiment, free of noise. Moreover, instead
studying a standard test bench for nonlinear dynamics~such
as the Rossler equations or the Lorenz ones!, we will work
with the flow that is obtained after the integration of t
following set of ordinary differential equations@9#:

x852~z12!d~x2a!1~22z!$a~x22!2by2a~x22!

3@~x22!21y2/R2#%,

y852~z12!~y2b!1~22z!$b~x22!2ay2ay@~x22!2

1y2/R2#%, ~3!

ez85~42z2!@z122m~x12!#2ecz

with the parameter values listed in the caption of Fig. 2. T
system was chosen for the following reason: its dynam
consists on a fast alternation between two dynamical regi
~one withz'2 and another one withz'22), as in a stan-
dard relaxation oscillation. In each of the two dimension
manifolds in which the system exists most of the time,
behavior can be easily prescribed@in this case, the system
evolves to a stable fixed point at (xu ,yu ,zu) ' (a, b, 2) in
the upper branch , which can never be reached, while in
lower branch the flow is ruled by an unstable focus
(xl ,yl ,zl) ' (2, 0, 22)]. This is an example of a system
atic way @8# to construct homoclinic attractors and chao
flows: in our case, it helps us to build chaotic flows wi
desired topological properties. Notice that with properly ch
sen parameters, this system should present chaotic solu
of a Shilnikov-type, as it consists of a ‘‘switch’’ that reinjec
the flow expelled by a~saddle! focus back to its neighbor
hood along its one-dimensional attracting manifold.

In Fig. 2~b!, we display a set of 11 patches. Each is t
result of joining the vertices that were selected as mentio
in Sec. IV. They constitute a rough caricature of the stra
attractor displayed in Fig. 2~a!, but reflect the way in which
the covering cells are connected.

As mentioned in Sec. IV, we chose a criterion to defi
the largest radius so that the points enclosed in the se
good approximations to ad-cell. The dimensiond is pro-
vided by the number of singular values that can be eff
03620
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tively approximated by a linear function in terms of the num
ber of points forming the smallest admissible cell. For th
toy model,d52 while n53 because the system treated
very dissipative, but nothing prevents the construction
complexes in the case of manifolds for which cells live in
Euclidean space of the same dimension of phase space.
criterion allows us to decompose the invariant set in
2-cells. Notice that in Fig. 2~b!, only 11 are displayed for
simplicity ~they constitute a complex of the same homolo
cal type as the original one!.

The vertices of the 2-cells displayed are arbitrarily
beled with numbers from 1 to 26, as shown in Table I. Fro

FIG. 2. The strange attractor generated by the integration of
system of Eq.~2!, with the following set of parameters:a57, b
51.435, c51, d51.5, m51.543, R56, a50.5, b54, e50.15
~a!. Display of 11 cells obtained by joining the vertices that we
selected in Sec. IV.
9-5
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DENISSE SCIAMERELLA AND G. B. MINDLIN PHYSICAL REVIEW E64 036209
this table, one can compute then-chain groups, theBn
groups, etc. But as we mentioned in Sec. II, a geome
description of the gluing of then-cells, which is independen
of the particular cell decomposition, can only be achiev
through the calculation of the homologies. The content
Table I is enough to determine that then-homology groups
(Hn

’ s) of this complex are

H0'Z,H1'Z3,H2'0,

whereZ is generated by one of the vertices~for example,
@26#!, and the three loops ofH1 are generated by the follow
ing cycles, written as oriented 1-chains: the first loop isL1
5 ^3,4&2^3,6&1^4,5&1^5,8&2^6,7& 2^7,9&1^8,17&
2^9,24&1^17,20&1^20,21&1^21,23&1^23,24&, the second
one is L252^1,2&1^1,3&2^2,22&1^3,4&1^4,5&1^5,19&
1^19,22&, and the third one isL35^3,4&2^3,6&1^4,5&
1^5,12&2^6,7&2^7,10&2^10,16&1^12,13&1^13,1&
1^14,15&1^15,16&.

In summary, an analysis of the complex built from gluin
the cells that locally cover the data indicates that the dyn
ics takes place close to a branched manifold constituted
only one connected piece, in which three nonequival
~through homology! loops exist, and that it encloses no cav
ties. The explicit construction of the loops that generateH1
allows us to unveil the structure of the branched manifold
consists of a disk on which two strips are attached. T
should be compared with our third theoretical example
Sec. III.

VI. TOY MODEL II

As mentioned in the Introduction, the topological a
proach to the study of chaotic time series data was base
the description of the organization of the periodic solutio
visited by the trajectory under study. Knot theoretical to
were used to characterize this organization, which co
eventually be summarized by the description of the templa
that were able to hold the periodic solutions.

The price to be paid for the elegance that knot theory a
to the field is a strong restriction of the range of validity

TABLE I. Vertices of the oriented cells corresponding to the c
decomposition of the strange attractor shown in Fig. 2~b!.

Cell Vertices

1 28,1,2,3,4,5,12
2 1,2,3
3 4,5,8,6,3
4 5,8,17,20,19
5 8,17,18,11,10,7,29,6
6 7,29,6
7 10,9,7
8 10,9,24,23,21,22,25,26,27,16
9 21,22,19,20

10 22,25,1,2
11 25,28,12,13,14,15,16,27,26
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the approach: a closed curve is no longer knotted in a sp
of dimension larger than 3. Even flows as simple as the o
that can take place on a Klein bottle cannot be studied w
knot theoretical tools; a Klein bottle, which is a locally two
dimensional object, cannot be embedded in three dimens
~without self-intersections!.

Our second example consists therefore of a chaotic fl
that is built, as in the previous case, by dynamically conne
ing slow building blocks with simple dynamics. The dy
namic system under study is

x852~z12!d$x2@a1e3~21w!#%1~22z!$a~x22!

2by2a~x22!@~x22!21y2/R2#%,

y852~z12!~y2b!1~22z!$b~x22!2ay ~4!

2ay@~x22!21y2/R2#%,

e1z85~42z2!@z122m~x12!#2e1cz,

e2w85~42z2!@z122m~x12!#2e2cz

with parameter values given in the caption of Fig. 3. T
flow generated by this set of equations is such that~a! any
three-dimensional projection of it presents self-intersectio
and ~b! the flow can be locally approximated by two
dimensional patches (d52). The geometric prescription to
create this flow is to induce an oscillation in the coordina
of the point that attracts the trajectories in the upper bra
of the fast manifold (z'2). Therefore, one expects a flo
that is not completely unrelated to the previous one: the d
for z'22 and the existence of a small branch from th
central disk into itself should be preserved. On the ot
hand, it is reasonable to expect a higher degree of comp
ity, as a new dynamic ingredient was added.

Table II contains the vertices of the 11 cells displayed
Fig. 3~b! ~with the vertices arbitrarily labeled from 1 to 24
It is worth remarking that, even if Fig. 3 displays a thre
dimensional projection of the strange attractor, the constr
tion of the complex of cells and the calculation of the h
mology groups are entirely performed in four dimensio
(x,y,z,w); in other words, results are completely indepe
dent of the projection, chosen with the sole aim of illustr
ing our example. From the information in this table, one c
compute the homology groups describing the comp
~through calculations such as the one explained in deta
the Appendix!. This gives rise to

H0'Z,H1'Z4,H2'0,

which indicates that there is one connected compon
no cavities, and four loops. In terms of the vertices writt
in the table, these four closed paths are as follows:
first loop L15^7,9&2^7,13&1^9,15&2^13,14&2^14,16&
1^15,16&, the second loopL252^7,9&1^7,13&2^9,10&
2^10,22&1^13,14&1^14,22&, the third loop L352^3,4&
1^3,7&2^4,5&2^5,23&1^7,9&1^9,10&1^10,23&, and the

l
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fourth loopL45^4,5&2^4,8&1^5,8&. One corresponds to th
path around the hole of a central disk. The other three e
along the three branches of the complex, one of which re
jects flow from the outer region of the central disk to
inner part, and the other two stretch and fold the flow at
outer part of the central disk to reinject it. Notice that t
geometry does not seem to be that different from what w
obtained in the example of the preceding section. The m
difference is that in the present case, one of the two branc
that emerges from the central disk bifurcates in two stri
one of which twists before gluing.

FIG. 3. The three-dimensional projection (x,y,z) of the strange
attractor generated by the integration of the system of Eqs.~3!, with
the following set of parameters:a57, d50.5, a50.3, b57, e1

50.165,e250.01,e352 ~a!. Display of the 11 cells making up th
complex obtained as explained in Sec. IV~b!.
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VII. CONCLUSIONS

The analysis of time-series data has been deeply enric
by the tools of nonlinear dynamics. Once that complexity
found to be compatible with simple deterministic rules, t
analysis of complex time-series data has to address~a!
whether the system is being ruled by a simple determini
prescription;~b! if this is the case, whether it possible t
model this rule; and finally~c!, how to refute or validate a
model. Along these lines, a topological approach tow
time-series data consists in finding the branched manifo
that could hold all the periodic orbits found to coexist wi
given complex time-series data. This approach has two m
shortcomings:~a! the dimensionality of the system unde
study was bound to be lower than or equal to 3~since the
compatibility between the flow and the branched manifo
was determined through the knot properties of the perio
orbits in either case!, and~b! the size of the data file had t
be large enough to enable us the reconstruction of sev
periodic orbits@10,11#.

In this work, we describe branched manifolds through h
mologies. This allows us to study situations in which t
flows exist in manifolds of dimension larger than 3, as w
as reasonably small time-series data~as the method does no
rely on the characterization of periodic orbits!. Our calcula-
tions begin by building complexes that summarize how
glue the cells that approximate the data. Codes that man
late algebraically this information allow us to identify cha
groups, boundary maps, cyclic groups, and homolo
groups. We can also explicitly build the generators of tho
groups and determine the orientability of the compl
through the definition and calculation of the orientabili
chains.

In this work, we wrote the homological description o
three branched manifolds, as well as the complexes appr
mating numerical flows~of three- and four-dimensional sys
tems, respectively!.
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TABLE II. Vertices of the oriented cells corresponding to th
cell decomposition of the chaotic flow shown in Fig. 3.

Cell Vertices

1 1,2,3,4,5,6
2 4,3,7,8
3 8,7,9
4 9,10,11,12,1,6,5,8
5 7,9,15,14,13
6 9,15,16,17
7 17,16,14,13,18
8 14,13,19,20,21,22
9 21,22,10,9

10 6,5,23,24
11 24,11,10,23
9-7
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APPENDIX

Let us list the basic steps to compute the homolo
groups through a simple example. Figure 4 shows an a
trary cell decomposition of a cylinder, which gives rise to
nonsimplex complex in which the vertices have been labe
with numbers from 1 to 8. We follow the steps listed in Se
II to calculateBk , Zk , andHk for k51.

~i! The list of vertices present in Fig. 4 is summarized
Table III. In order to represent algebraically the bounda
maps of this complex, one needs two matrices: In the fi
matrix, every 0-cell or vertex is assigned a column. The ro
correspond to the 1-cells. As the action of the operator] on
an oriented 1-cell yields the terminal vertex minus the init
vertex, the rows of this matrix are vectors with a 1 in t
column corresponding to the terminal vertex and a21 in the
column of the initial point. In the case of our cylinder, th
matrix reads

] 1 2 3 4 5 6 7 8

^1,2& 21 1 0 0 0 0 0 0
^1,3& 21 0 1 0 0 0 0 0
^1,4& 21 0 0 1 0 0 0 0
^2,5& 0 21 0 0 1 0 0 0
^2,6& 0 21 0 0 0 1 0 0
^3,4& 0 0 21 1 0 0 0 0
^3,7& 0 0 1 0 0 0 1 0
^4,7& 0 0 0 21 0 0 1 0
^5,6& 0 0 0 0 21 1 0 0
^5,7& 0 0 0 0 21 0 1 0
^6,8& 0 0 0 0 0 21 0 1
^7,8& 0 0 0 0 0 0 21 1

In the second matrix, every 1-cell is assigned a column
the rows correspond to the 2-cells. The border of a 2-ce
a chain of 1-cells with sign1 if the direction of the 1-cell is
consistent with the clockwise or anticlockwise orientation

FIG. 4. Arbitrary cell decomposition of a cylinder with its non
simplex complex. Vertices are numbered from 1 to 8.
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the vertices of the 2-cell. In our example, the transpose of
second matrix (Mt) is equal to

] t ^1,3,7,8,6,2& ^3,7,4& ^4,7,5,2,1& ^6,8,7,5&

^1,2& 21 0 21 0
^1,3& 1 0 0 0
^1,4& 0 0 1 0
^2,5& 0 0 21 0
^2,6& 21 0 0 0
^3,4& 0 21 0 0
^3,7& 1 1 0 0
^4,7& 0 21 1 0
^5,6& 0 0 0 1
^5,7& 0 0 21 21
^6,8& 21 0 0 1
^7,8& 1 0 0 21

~ii ! To calculateB1, one just needs the linearly indepe
dent rows of the matrixM. In the example of the cylinder
the rows ofM are linearly independent, and thusB1 consists
of the four 1-chains listed as columns above.

~iii ! The 1-cycles are the null space of the transpose of
first matrix. In our example, this calculation renders five
cycles in the complex. We illustrateZ1 as follows:
Z1 5 @@2^1,2&1^1,3&2^2,6&1^3,7& 2^6,8&1^7,8&, 1 ^1,2&
2^1,3&1^2,5&2^3,7&1^5,7&,1^2,5&2^2,6&1^5,6&,2^1,3&
1^1,4&2^3,7&1^4,7&,1^1,3&2^1,4&1^3,4&##.

~iv! Expressing now the elements ofB1 as linear combi-
nations of the elements ofZ1, one obtains chains of 1-cycle
that by definition are homologous to zero. This establis
homology relations between the 1-cycles, which one m
take into account to obtainH1.

~v! With the relations obtained in step~iv!, one can con-
clude that of the five 1-cycles, only one is homologica
independent. In other words, the homology relations tell
that the first four 1-cycles are homologous to the last~any
information carried by the first loops is also carried by t
last!. The final result is

H15@@1^1,3&2^1,4&1^3,4&##

with a group structureH1'Z, which reveals that there is
only one nontrivial loop in a cylinder. This conclusion
independent of the particular cell decomposition we ha
chosen, as it denotes a geometric property of the cylin
itself.

TABLE III. Vertices of the oriented cells corresponding to th
cell decomposition of the cylinder shown in Fig. 4.

Cell Vertices

1 1,3,7,8,6,2
2 3,7,4
3 4,7,5,2,1
4 6,8,7,5
9-8
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